140. Stoffwechselprodukte von Mikroorganismen

217. Mitteilung¹)

Röntgenstrukturanalyse von O-Acetyldihydrostreptazolin

von Andreas Karrer und Max Dobler

Laboratorium für organische Chemie der Eidgenössischen Technischen Hochschule, CH-8092 Zürich

(7.VI.82)

Summary

The X-ray crystal structure analysis of the O-acetyl dihydro derivative of the antibiotic streptazolin (orthorhombic, a=8.628, b=9.814, c=14.932 Å, space group $P2_12_12_1$) established the constitution of the latter as 1.

Das Antibiotikum Streptazolin (1) wurde aus Kulturen von Streptomyces viridochromogenes isoliert [2]. Die Verbindung zeigte bei der Reinigung eine Tendenz zur Polymerisation, doch konnte durch Hydrierung und Acetylierung ein gut kristallisierbares, stabiles Folgeprodukt 2 erhalten werden. Im Verlauf der Untersuchung mit spektroskopischen Methoden und chemischem Abbau [2] traten Widersprüche zwischen einer aus den Abbauresultaten plausibel erscheinenden Strukturformel mit drei fünfgliedrigen Ringen und den ¹H-NMR.-Spektren auf, da diese wegen der Kopplungskonstanten eher für antiperiplanar angeordnete Methylenprotonen in einem Sechsring sprachen. Die Röntgenstrukturanalyse des O-Acetyldihydrostreptazolins wurde zur Abklärung dieser Unstimmigkeit durchgeführt und führte zur in Formel 2 dargestellten Konstitution. Offenbar erfolgt bei der katalytischen Hydrierung von Streptazolin (1) formal eine 1,4-Addition am Dien C(3)=C(4)-C(8)=C(9).

¹) 216. Mitt., s.[1].

0018-019X/82/5/1432-04\$01.00/0

© 1982 Schweizerische Chemische Gesellschaft

Figur. Ansicht von 2

Tabelle 1. Bindungslängen (Å) (gesch	itzte Standarda	ibweichungen $ imes$	10 ³ in Klammern)
------------------------------	----------	-----------------	----------------------	------------------------------

Bindung	Länge	Bindung	Länge
$\overline{N-C(1)}$	1,474(6)	C(6)-O(2)	1,444(5)
N-C(5)	1,466(5)	C(7) - C(8)	1,504(5)
N-C(11)	1,360(5)	C(7)-O(3)	1,461(5)
C(1) - C(2)	1,522(7)	C(8) - C(9)	1,513(6)
C(2) - C(3)	1,547(6)	C(9) - C(10)	1,529(6)
C(3) - C(4)	1,500(6)	C(11) - O(1)	1,207(5)
C(4) - C(5)	1,502(6)	C(11) - O(2)	1,367(5)
C(4) - C(8)	1,330(5)	C(12) - C(13)	1,503(6)
C(5) - C(6)	1,527(6)	C(12) - O(3)	1,358(5)
C(6)-C(7)	1,539(5)	C(12)-O(4)	1,196(5)

Tabelle 2. Bindungswinkel

		A		
Winkel	Grad	Winkel	Grad	
C(1) - N - C(5)	117,0	C(6)-C(7)-C(8)	104,8	
C(1) - N - C(11)	121,3	C(6)-C(7)-O(3)	109,8	
C(5) - N - C(11)	109,8	C(8) - C(7) - O(3)	108,7	
N-C(1)-C(2)	111,4	C(4) - C(8) - C(7)	111,1	
C(1) - C(2) - C(3)	112,0	C(4)-C(8)-C(9)	128,4	
C(2) - C(3) - C(4)	108,4	C(7) - C(8) - C(9)	120,5	
C(3) - C(4) - C(5)	115,6	C(8)-C(9)-C(10)	113,2	
C(3) - C(4) - C(8)	131,6	N-C(11)-O(2)	110,4	
C(5) - C(4) - C(8)	112,1	N-C(11)-O(1)	128,6	
C(4) - C(5) - N	110,1	O(1)-C(11)-O(2)	120,9	
C(4) - C(5) - C(6)	104,6	C(13)-C(12)-O(3)	111,6	
N-C(5)-C(6)	102,4	C(13)-C(12)-O(4)	125,8	
C(5) - C(6) - O(2)	104,9	O(3) - C(12) - O(4)	122,6	
C(5) - C(6) - C(7)	105,2	C(6) - O(2) - C(11)	109,8	
C(7) - C(6) - O(2)	110,0	C(7) - O(3) - C(12)	115,9	
., ., .,				

Winkel	Grad	Winkel	Grad
$\overline{C(5)-N-C(1)-C(2)}$	- 50,8	C(8)-C(4)-C(5)-C(6)	10,1
N-C(1)-C(2)-C(3)	51,8	C(4)-C(5)-C(6)-C(7)	- 14,8
C(1)-C(2)-C(3)-C(4)	53,3	C(5)-C(6)-C(7)-C(8)	14,6
C(2)-C(3)-C(4)-C(5)	54,5	C(6)-C(7)-C(8)-C(4)	- 9,1
C(3)-C(4)-C(5)-N	- 52,0	C(7)-C(8)-C(4)-C(5)	- 0,6
C(4)-C(5)-N-C(1)	49,3		
C(11) - N - C(5) - C(6)	16,8	C(7)-C(8)-C(9)-C(10)	83,6
N-C(5)-C(6)-O(2)	- 13,7		
C(5)-C(6)-O(2)-C(11)	6,6	C(8)-C(7)-O(3)-C(12)	171,3
C(6)-O(2)-C(11)-N	4,0	C(7) - O(3) - C(12) - C(13)	177,7
O(2)-C(11)-N-C(5)	- 13,7		

Tabelle 3. Ausgewählte Torsionswinkel (Grad)

In der *Figur* ist eine Ansicht von 2 dargestellt. Bindungslängen (*Tabelle 1*) und Bindungswinkel (*Tabelle 2*) weisen kaum Besonderheiten auf. Die Konformationen der drei Ringe sind aus den Torsionswinkeln in *Tabelle 3* ersichtlich. Das N-Atom ist ausgeprägt pyramidal; es liegt 0,29 Å ausserhalb der Ebene durch C(1), C(5) und C(11). Die Packung der Molekeln in der Einheitszelle weist keine kurzen Kontakte auf, insbesondere sind weder intra- noch intermolekulare H-Brücken vorhanden.

				$\frac{1}{11}$
	X	у	2	$O_{aq}(\mathbf{A}^{-})$
N	0,4251(4)	-0,3988(3)	0,4124(2)	0,046
O(1)	0,2757(4)	-0,4945(3)	0,5247(2)	0,064
O(2)	0,3469(3)	-0,2751(3)	0,5300(2)	0,049
O(3)	0,4110(3)	0,0645(3)	0,4404(2)	0,043
O(4)	0,4172(5)	0,0751(4)	0,5903(2)	0,078
C(1)	0,3915(6)	-0,4955(5)	0,3394(3)	0,061
C(2)	0,2682(6)	-0,4399(4)	0,2763(3)	0,058
C(3)	0,3078(6)	-0,2948(4)	0,2429(3)	0,054
C(4)	0,3383(5)	-0,2063(4)	0,3229(2)	0,040
C(5)	0,4593(4)	- 0,2578(4)	0,3867(3)	0,040
C(6)	0,4291(5)	-0,1800(4)	0,4735(3)	0,043
C(7)	0,3216(4)	-0,0616(4)	0,4469(2)	0,040
C(8)	0,2632(4)	-0,0986(4)	0,3552(2)	0,039
C(9)	0,1296(5)	-0,0212(4)	0,3137(3)	0,046
C(10)	0,1799(6)	0,1107(5)	0,2676(3)	0,057
C(11)	0,3424(5)	-0,4002(4)	0,4899(3)	0,048
C(12)	0,4540(5)	0,1216(4)	0,5194(3)	0,050
C(13)	0,5505(6)	0,2472(5)	0,5052(4)	0,061

Tabelle 4. Kristallkoordinaten (Standardabweichungen × 10⁴ in Klammern, $U_{aq} = \frac{1}{3} \Sigma U_{ii}$)

Experimenteller Teil

Kristalldaten. O-Acetyldihydrostreptazolin (2), $C_{13}H_{17}NO_4$, Mol.-Gew. 251, orthorhombisch, a = 8,628(3), b = 9,814(3), c = 14,932(7) Å, V = 1264.4 Å³, Z = 4, Raumgruppe $P_{2_12_12_1}(D_2^4), D_x = 1,32$ g/cm³.

Strukturanalyse und Verfeinerung. Die Raumgruppe wurde aus Präzessionsaufnahmen, die Zellkonstanten aus Diffraktometermessungen mit MoK_a-Strahlung bestimmt. Die Messung der Reflexintensitäten erfolgte auf einem automatischen Diffraktometer (Enraf-Nonius CAD 4, graphitmonochromatisierte MoK_a-Strahlung). Bis zu $\theta = 28^{\circ}$ wurden 1762 unabhängige Reflexe beobachtet, von denen 1240 mit $F_{0} > 2\sigma(F_{0})$ für die Strukturanalyse verwendet wurden.

Die Struktur wurde mit direkten Methoden (MULTAN 80 [3]) bestimmt. Die Verfeinerung erfolgte durch das Verfahren der kleinsten Quadrate, sie wurde durch Differenzsynthesen überprüft. Bis auf die H-Atome der Methylgruppen H₃C(10) und H₃C(13) wurden experimentelle H-Lagen gefunden, doch wurden berechnete Lagen verwendet und nicht verfeinert. Mit diesen Annahmen und Einheitsgewichten ergab sich ein abschliessender *R*-Faktor von 0,047. Die Kristallkoordinaten sind in *Tabelle 4* zusammengestellt²).

LITERATURVERZEICHNIS

[1] S. Adapa, P. Huber & W. Keller-Schierlein, Helv. Chim. Acta Acta, in press.

- [2] H. Drautz, H. Zähner, E. Kupfer & W. Keller-Schierlein, Helv. Chim. Acta 64, 1752 (1981).
- [3] P. Main, 'MULTAN 80', University of York, England 1980.

²) Listen mit Strukturfaktoren, anisotropen Vibrationsparametern und Koordinaten von H-Atomen stehen auf Verlangen zur Verfügung.